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Abstract A novel method, called Direct Inversion in the Spectral Subspace (DISS),
has been developed for the quantitative (and partly qualitative) analysis of chemi-
cal mixtures. The method belongs to the broad group of “supervised classification”
methods: its use necessitates the components’ “pure” spectra, either experimental or
computed. On the basis of three simple conditions, an elegant, linearized system of
equations has been deduced, taking into account a sole restriction via the Lagrange’
multiplier method. This restriction is seemingly redundant but it has been shown
that with its use the unknown normalization constant of the components’ descriptive
weighted average (CDWA) spectrum can be taken into consideration. The system of
linearized equations can be solved repeatedly until convergence. Any kind of spectra
can be used; the method does not require the non-negativity of spectral data points. Two
versions of the new method have been developed: the normalized and the non-normal-
ized versions regarding the components’ spectra. In ideal cases, the non-normalized
version of the DISS method provides a mixture’s accurate composition due to the itera-
tion for getting the correct norm of the CDWA spectrum. Realistically, the normalized
version of the DISS method identifies a mixture’s composition within a few molar
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percentage points accuracy, according to the test results in IR and 1H-NMR spectros-
copy. The normalized method functions without any calibration measurements and
needs only a control of accuracy; it is hoped that it will be a useful tool for chemical
and biochemical analysis as well as for spectral databases. The DISS method is also
useful for qualitative analyses in a limited sense: in the case of computed spectra of
the components the set of the de facto components determined could be somewhat
wider than those existing in the real system.

Keywords Decomposition of molecular spectra · Lagrange multiplier · Quantitative
analysis · Qualitative analysis · IR · NMR · EPR · UV/Vis · Raman · CD · VCD ·
Hexa-chloro-buta-1,3-diene · Dioxane · D-Camphor · L-Menthol ·
Supervised classification · Spectral databases

1 Introduction

The quantitative analysis of spectra is one of the key tasks in chemical analysis (see
e.g., [1–6] and references therein). In the field of molecular absorption (e.g., ultravio-
let/visible, infrared) spectroscopy, the underlying principle is based on the well-known
Bouguer–Lambert–Beer (B–L–B) law that establishes a linear relationship between
spectral absorbance and concentration as well as path length [7–9]. That is, the absor-
bance is proportional to the number of particles. A deviation from linearity occurs at
higher absorbances due to ‘self-shielding’ effects and a variety of non-linear transfor-
mations can be used to correct this problem (see e.g., [10–14] and references therein).
This can be done, for example, by very elegant (but complex, CPU-time consuming)
methods, as mentioned in Ref. [14], where significantly overlapped and non-linear
spectral data were analysed by a Support Vector Machine learning algorithm (see e.g.,
Ref. [15,16] and references therein). The application of the B–L–B law raises addi-
tional obstacles: (i) its use requires the explicit knowledge of the molar absorptivity at
special frequencies, or, alternatively, the application of calibration curves is needed;
and (ii) the scattering of light on the samples’ particles in case of suspensions also
causes deviations [17]. The B-L-B law is frequently applied for the chemical analy-
sis of multicomponent mixtures (see e.g., Ref. [5]). In this case, the ‘multiwavelength
spectroscopic method’ [5] is used and a system of linear equations is established based
on the absorbances as well as the concentrations.

Beside the absorption spectra, other topics of spectroscopy also offer important
advantages for quantitative analysis; here we briefly mention nuclear magnetic reso-
nance (NMR) and Raman spectrometry as the most frequently used methods. In the
field of NMR spectrometry [4], there is a direct proportionality of the integrated reso-
nance intensity and the concentration. Thus, absolute concentrations can be determined
by using an internal intensity standard of known concentration. Raman spectrometry
is similarly useful for quantitative investigations [6], with the intensity of Raman
scattered light being proportional to the number of scattering molecules.

However, the problem of spectral decomposition has been encountered in chemo-
metrics as the identification of pure component spectra from heavily overdeter-
mined complex spectra (together with the composition). The first method for curve
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resolution, called ‘self-modeling curve resolution’ technique, was developed by Law-
ton and Sylvestre [18] in order to solely treat binary mixtures. Later, Borgen et al.
[19,20] have generalized Lawton and Sylvestre’s original procedure: this is the so-
called generalized ‘multivariate N-component (or, self-modeling) curve resolution’
[19–21], which was undeservedly ignored in the literature due to its mathematical and
technical difficulties [22,23]. The Principal Component Analysis (PCA, see e.g., Ref.
[24]) has been applied in conjunction with self-modeling curve resolution in the field
of optical spectroscopy [25–28], NMR spectroscopy [29,30], EPR spectroscopy [31],
and even in liquid chromatography [32]. In case of partial or complete overlap of the
signals originating from different species, the PCA method is useful in identifying
the correct number of the components and is a useful tool in reconstructing the corre-
sponding pure spectra, up to analytically investigated 3-component systems [22,23].

From the logical point of view, we face two types of problems in the aforemen-
tioned topics: (i) the spectra of the pure components (the so-called base spectra) are
known and the concentrations need to be determined; (ii) the base spectra are not
known either. In the field of pattern recognition (see e.g., Ref. [33] and references
therein), these two types of problems are mentioned as cases of supervised (i), and
unsupervised (ii) classification. In this article, we are dealing with the problem (i), that
is, the base spectra are known and the concentrations have to be determined.

In this work we present a new, independent method that is mainly beneficial for
quantitative analysis. As shown, it is useful even for a qualitative chemical analysis,
at least in a limited sense. The concept behind the new method originated from the
field of quantum chemistry, namely from Pulay’s widely used Direct Inversion in the
Iterative Subspace (DIIS) procedures [34–36].

Beyond the aforementioned data (path length, concentration of the sample) the
actual representation of any spectrum could also depend on the values of various other
parameters, for example, temperature, phase, pressure, solvent, and pH. In addition to
these parameters, one must keep in mind the possible association of the components
(with the solvent as well) and the effects of impurities and electronic noise. In the
present article, the effects of the parameters mentioned will be eliminated in a simpli-
fied manner. We suppose that all the spectra of the pure compounds as well as those
of their mixture are observed at the same values of parameters (or at least at values
that are as similar to the parameters as it is possible).

2 Experimental details

The IR spectra have been recorded by a BRUKER IFS 55 spectrometer using a res-
olution of 4 cm−1 and 128 scans at room temperature. The spectra were observed
in a liquid film between KBr windows in the 4,000–400 cm−1 region and contained
n = 3, 734 digitalized spectrum points. Both the spectroscopic grade hexa-chloro-
buta-1,3-diene (spectrosc. purity) and dioxane (99.5%) were purchased from Merck.
Both materials were used without further purification. Homogenization was carried
out by ultrasonic technique.

The 1H-NMR spectra have been recorded by a BRUKER DRX 500 spectrometer
at an 11.744 T field using 5 mm Z-gradient inverse probe in dry CDCl3 (Aldrich,
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99.9% D-content and 1% TMS internal reference compound) solvent. The gas-chro-
matographic grade (>99%) D-camphor and the FCC grade L-menthol (>99%) were
purchased from Merck and Sigma–Aldrich, respectively. Both crystalline compounds
were used without further purifications. A standard 1D single pulse sequence was used
with 30◦ flip angle. 64 k data points were accumulated during 3.17 s with 5.0 s recy-
cling delay. The acquisition was repeated 16 times after 2 dummy scans. The spectrum
width was 20 ppm in all cases. The spectral interval was selected between 2.60 and
0.60 ppm containing n = 3, 172 data points.

3 Results and discussion

3.1 Theory

Let us consider a set of chemical compounds which form a homogeneous mixture.
For reasons given below, it is worth distinguishing two kinds of chemical compo-
nents in the mixture: the C1, C2, . . . , Cm true (or, ‘de facto’) components and the
Cm+1, Cm+2, . . . , Cl virtual (i.e., not actually present) components. Formally, all of
these components can be considered as subsets of the C1, C2, . . . , Cl set of compounds
which will be termed as ‘potential components’:

de f acto components
︷ ︸︸ ︷

C1, C2, . . . , Cm ,

virtual components
︷ ︸︸ ︷

Cm+1, Cm+2, . . . , Cl
︸ ︷︷ ︸

potential components

, (1)

where l ≥ m ≥ 1.
Let us consider the |ΦI 〉 ‘descriptive’ spectra of the potential components (describ-

ing the individual spectra of the chemical components mentioned). Here, the term
‘spectrum’ could mean any of the usual molecular spectra, including infrared (IR),
Raman, ultraviolet/visible (UV/Vis), NMR, electron paramagnetic resonance (EPR),
circular dichroism (CD), vibrational circular dichroism (VCD), and so on. Naturally,
we will apply one and the same type of spectrum for all the potential components and
for the resulting experimental spectrum of the mixture using the same methodology
(absorption, emission, Raman, reflectance, and so on) and even in the same frequency
region as well. All of the mixture’s components are required to have their characteristic
spectra in the selected spectral region (that is, none of them is the zero function, vide
infra). The spectra can correspond to any phase (gas, liquid, or crystalline powder);
however, in the present paper we will focus on the absorption spectra of completely
miscible liquid compounds.

The ‘quality’ of the |ΦI 〉 descriptive spectra of the potential components could
be different:

∣

∣Φ
exp
I

〉

experimental spectra, or
∣

∣Φ
comp
I

〉

computed ones (in other words:
‘exact’ or approximate spectra). In the case of computed spectra, the level of the quan-
tum mechanical approximation at which the spectra were calculated is arbitrary. The
natural demand is to employ at least a moderate level of theory which is inexpensive
and simultaneously guarantees a ‘quite accurate’ computation of the spectra.
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Let us consider the |ΦI 〉 = ΦI (ν) descriptive spectra of the potential components
as well as the experimental spectrum of the mixture,

∣

∣Φmix
〉 = Φmix(ν), as functions of

the L2[a,b] Hilbert-space [37,38], where [a,b] represents the finite and closed interval
of the ν frequency region considered. Nowadays, experimental spectra are recorded
and saved mostly in digitalized form; thus, the spectra mentioned before can also be
considered as vectors of the L(n)

2 [a,b] real n-dimensional subspace of the Hilbert-space
(with n typically large, about 10,000):

∣

∣

∣Φ
mix

〉

, |ΦI 〉 (I = 1, 2, . . . , l) ∈ L(n)
2 [a,b] ⊂ L2[a,b]. (2)

For the construction of a mathematical procedure, we have to take into consideration
the following three Conditions.

Condition I:
(a) The mixture’s experimental spectrum

∣

∣Φmix
〉

and all the |ΦI 〉 (I = 1, 2, . . . , l)
descriptive spectra of the potential components are known. The

∣

∣Φmix
〉

spec-

trum is normalized in the L(n)
2 [a,b] (or L2[a,b]) space [37,38]:

SΦmix(ν) · Φmix(ν) = 1 (3a)

(b) In some cases (vide infra) we will accept other normalization conditions as
well corresponding to the components’ descriptive spectra in the L(n)

2 [a,b]
or L2[a,b]) space [37,38]:

SΦI (ν) · ΦI (ν) = 1 (I = 1, 2, . . . , l). (3b)

(Here the symbol S means definite integration over continuous variables or summa-
tion over discrete ones. For a better understanding, ΦI (ν j ) means the j-th coordinate

of the I-th chemical component’s spectrum in the L(n)
2 [a,b] space).

Condition II: The interaction between the de facto components is supposed to
be weak enough to use a simple additive formula for a homogenous mixture.

Thus, we can write, for instance, for the
∣

∣Φmix
〉

mixture’s experimental spectrum:

∣

∣

∣Φ
mix

〉

= N mix
∑

I

xexp
I

∣

∣Φ
exp
I

〉

, (4)

where the xexp
I (I = 1, 2, . . . , l) are the linear coefficients (being proportional to the

actual concentrations, vide infra; naturally, these coefficients are zero for the I =
m + 1, m + 2, . . ., l virtual components), and N mix stands for the normalization con-
stant of the mixture’s experimental spectrum. It must be emphasized that the

∣

∣Φmix
〉

mixture’s experimental spectrum is empirically known and is normalized (see Con-
dition Ia), for example, by the usual ‘point-by-point’ method, in case of digitalized
spectra. Therefore, an explicit knowledge of the xexp

I experimental concentrations is
not required for this purpose:
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N mix =
(

SΦmix(ν)Φmix(ν)
)−1/2

. (5)

Note that the additivity is realized at a much higher level than expected on the basis of
the aforementioned breakdown of the B–L–B law (in case of absorption spectra): there
are rather few frequency regions of the spectra showing high absorbance; for other
wide regions, the linearity is still valid. In other words, in the simple application of
the B–L–B law, the information observed only at several frequencies is used, whereas
the present method applies information obtained from a wide (or ‘complete’) spectral
region.

Condition III: The |ΦI 〉 descriptive spectra of the potential components are line-
arly independent (at both the experimental and the computed level; see Appendix
A, which discusses this condition with some mathematical rigor).

During the current work, it will be assumed that Conditions I–III are fulfilled. Depend-
ing on the fact that Condition Ib is also valid (or not), we define the two basic versions
of our new procedure: the ‘normalized’ (Condition Ib is also valid) and the ‘non-nor-
malized’ versions (Condition Ib is omitted).

Using the notations of Appendix B, let us define the gross error vector for the case
of an additive mixture of the de facto components as follows:

∣

∣φerr′〉 =
∣

∣

∣ϕ
mix

〉

− N
m

∑

I

xI |ΦI 〉 =
∣

∣

∣ϕ
mix

〉

− N
l

∑

I

xI |ΦI 〉 (6)

where the xI linear coeffients characterizing the composition are to be calculated
(certainly, the formal inclusion of the virtual components into the summation does not
change the physical situation), and the N normalization constant of the

∑

I xI |ΦI 〉
components’ descriptive weighted average (CDWA) spectrum is treated as a parameter.
In Eq. 6 |ΦI 〉 will be substituted as:

|ΦI 〉 =
{ |ϕI 〉 (normalized version) (7a)

∣

∣ϕ′
I

〉

(non-normalized version) (7b)

for the components’ descriptive spectra, respectively (see also Appendix B). Now, let
us minimize the square of the norm of the

∣

∣φerr′〉 gross error vector [using the substi-
tution of Eq. 7a, that is, we are dealing with the generation of the secular equation of
the normalized version], together with the trivial

l
∑

I=1

xI = 1 (8)

constraint. Appendix B shows that the linear coefficients cannot be negative and are
lower or equivalent to unity, automatically obeying the constraint given in Eq. 8. Con-
sequently, these linear coefficients are the molar ratios. [On this basis one can suppose
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that the constraint given in Eq. 8 is unnecessary for the procedure. However, the sit-
uation is the opposite and albeit Eq. 8 contains redundant information, its explicit
implementation is absolutely necessary in the present method due to the complex
non-linear character of Eq. 9, vide infra.] Using the method of the undetermined mul-
tipliers of Lagrange, we have to minimize the following error functional with respect
to the set of xI :

F = 〈

φerr′|φerr′〉 − 2λ

(

l
∑

I=1

xI − 1

)

→ min, (9)

where λ is a Lagrangian multiplier. Differentiating Eq. 9 by xJ and λ we get the
following system of l + 1 linear equations:

⎡

⎢

⎢

⎢

⎢

⎣

S11 S12 . . . S1l 1
S21 S22 . . . S2l 1
. . . . . . . . . . . . . . .

Sl1 Sl2 . . . Sll 1
1 1 . . . 1 0

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

x1N
x2N
. . .

xlN
−λ/N

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

Smix1
Smix2
. . .

Smixl

N

⎤

⎥

⎥

⎥

⎥

⎦

, (10)

where (using the notations given in Appendix B again)

SJ K ≡ 〈ϕJ |ϕK 〉 = SϕJ (ν) · ϕK (ν) (11)

and

SmixJ ≡
〈

ϕmix|ϕJ

〉

= Sϕmix(ν) · ϕJ (ν) (12)

(J, K = 1, 2, . . . , l) are the corresponding scalar products in the L(n)
2 [a,b] or L2[a,b]

space. It has to be emphasized that Eqs. (10–12) correspond to the normalized version
of the new procedure; that is, where Condition Ib is also valid. In this paper we are
dealing mostly with that version of the present procedure.

Appendix C provides proof that the inhomogenous system of linear equations given
in Eq. 10 has a unique solution when parameter N has a certain value. Necessarily,
that is the physically meaningful solution at which the convex [0 ≤ xI ≤ 1(I =
1, 2, . . . , l) and Eq. 8] conditions are automatically satisfied, so the unknown molar
ratios can be evaluated. Nevertheless, the solution for Eq. 10 can only be found in an
iterative procedure because the N normalization factor of the CDWA spectrum is also
unknown; its value depends on the values of the unknown molar ratios. The iteration
is repeated until convergence:

N (0) →
{

x (1), λ(1)
}

→ N (1) →
{

x (2), λ(2)
}

→ N (2) → . . . (13)

where N (i), x (i) and λ(i) are the normalization coefficient, the vector of the molar
ratios, and the Lagrangian multiplier corresponding to the i-th iterative step, respec-
tively. Note that the N normalization factor of the CDWA spectrum is calculated by
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applying the following expression (according to the normalized and non-orthogonal
basis set applied in the spectral subspace, see Appendix A) in the i-th step of the
iteration:

N (i) =
(

∑

I

∑

J

x (i)
I x (i)

J SI J

)−1/2

, (14)

[c.f., Eq. 11].
There are several similarities and differences between the present method, Pulay’s

DIIS [34,35] procedure, and the Geometry Optimization by Direct Inversion in the
Iterative Subspace (GDIIS) [36] procedure of Császár and Pulay. The main differ-
ence is as follows. In case of the DIIS (and GDIIS) procedure(s) there is an ‘external’
energy functional in terms of the MO coefficients (or nuclear coordinates, respectively)
which has to be minimized. In both cases, the use of the formalism concludes to a
purely quadratic ‘internal’ error functional which bears a system of linear equations
that has to be solved repeatedly according to the minimization of the external func-
tional. In case of our method there is no external functional but the error functional
given in Eq. 9 is quadratic in a formal sense only, so its use results to a linearized
system of equations that can necessarily be solved by an iterative method [c.f. Eq. 13].
The similarity between the procedures can be easily observed in the mathematical
structure of the resulting system of equations (compare Eq. 10 of the present work to
Eq. 6 of Ref. [34] and Eq. 1 of Ref. [35]). Accordingly, we propose that the present
method be termed as ‘Direct Inversion in the Spectral Subspace’ (DISS), since our
method works in the l-dimensional subspace of the L(n)

2 [a,b] space, spanned by the
|�I 〉 (I = 1, 2, . . . l) descriptive spectra of the potential components. Note that the
DISS method does not need the knowledge of the molar absorptivities or ellipticities
as follows from Eq. 10. Moreover, the normalized version of the DISS procedure does
not require any calibration, or, even the uniform value of the path lengths (for example,
in case of absorption spectra). However, in that version the molar ratios determined
by the solution of Eq. 10 can somewhat deviate from their true values due to the
the unphysical normalizations of the components’ spectra given in Condition Ib. The
larger the differences of the norms of the non-normalized components’ descriptive
spectra, the larger the deviations of the molar ratios from their true values [c.f. Eqs. 7a
and B.4].

The significance of the current DISS method can be illustrated in two typical appli-
cation fields:

1. Typical Application I (TA I): determination of the unknown composition in case of
a mixture of experimentally known compounds, i.e., l = m [using the notations of
Eq. 1], and the descriptive spectra of the components are of experimental (‘exact’)
quality: |ΦI 〉 = ∣

∣ϕ
exp
I

〉

. This is a standard case of a quantitative analysis.
2. Typical Application II (TA II): assigning a set of the de facto components within

a set of potential ones (e.g., in case of a performed “new” reaction producing
earlier unknown compounds). That is, l ≥ m [c.f., Eq. 1] and the descriptive spec-
tra of the components are of computed (‘approximate’) quality: |ΦI 〉 = ∣

∣ϕ
comp
I

〉

(Naturally, even the spectra of unknown compounds are computable). This is the
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case of a qualitative analysis, at least in a limited sense (vide infra, for details).
However, this kind of qualitative analysis is not similar to the commonly used
spectroscopic work, rather it is analogous to the problems of pattern recognition
[33,38]. Note that there can be ‘mixed cases’ where descriptive experimental and
computed spectra occur as well.

In the case of TA I, the normalized version of the DISS method can yield reasonable
estimates of the ‘accurate’ values of the xexp

I unknown molar ratios [c.f., Eq. 4], at
least in principle, if the noise and other disturbing effects are negligible, and, if the
norms of the non-normalized components’ descriptive spectra are similar enough. In
this ideal case, using the non-normalized version of the DISS method, the minimized
value of the F error functional [see Eq. 9] will be practically zero. In contrast, in the
case of TA II, the DISS method produces a minimized value for the error functional
F, which does not equal zero, neither in the case of the normalized, nor in the case of
the non-normalized versions. It must be emphasized that TA II of the DISS method
has a very natural prerequisite: the complete set of the de facto components has to be
within the set of the potential components. Since we must use approximate methods for
computing the descriptive spectra, the gross error vector contains unknown individual
spectral errors (corresponding to the components) beyond the unknown molar ratios.
Consequently, the DISS method yields somewhat distorted calculated values for the
components’ molar ratios due to the fact that the procedure tries to fit the CDWA
spectrum to the mixture’s experimental one as closely as possible). It can be expected
that the differences between the calculated and the ‘true’ values of the component
ratios will be smaller as the level of the quantum mechanical approximation is raised.
Note that the unreacted starting materials and/or the solvent can also be included in the
set of the potential components investigated, using their experimental spectra. In this
case, the set of the potential components can bear ‘mixed’ (partly experimental, partly
computed) spectra. The distortion of the molar ratios can even result in a set of the
de facto products that would be somewhat different from the true one. In summary,
in this situation, the DISS method does not produce an accurate assignment of the
set of the de facto products, yet its use has an advantageous feature, making the set
of the potential products much more closely resembling the original one. Hopefully,
this feature of the present method will be very useful in conjunction with spectral
databases.

The DISS method yields small or zero xI values for the virtual products. Note that
the appearance of small negative values of the molar ratios shows that (a) Condition III
is not completely valid, or (b) noise effects are not negligible. It goes hand in hand with
an ill-conditioned or near-ill-conditioned coefficient matrix in Eq. 10. In such cases
Levenberg’s procedure [39–41] can be applied to make the method more robust numer-
ically, in which the squared norm of the coefficients (multiplied by a small positive
number) is added to the original functional. However, there is a difference between
the use of the Levenberg’s procedure used by Pulay [41] and the present situation.
In the DISS method, the non-orthogonal version of the procedure has to be applied
[c.f., Eq. 11]. Consequently, its effect is the addition of a small positive number, multi-
plied with the value of the actual matrix element, to all of the SJ K (J, K = 1, 2, . . . , l)
elements of the DISS matrix.
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As can be seen, our DISS method requires the pure spectra of the chemical compo-
nents at the decomposition of the spectra of mixtures. In this context, the DISS method
belongs to the broad class of “supervised classification” methods (see e.g., Ref. [42]).

A Fortran program has been written for the application of the present method (pro-
gram DISS, Ver. 3.0, under development), which is available from the authors upon
request. In its present form, it is capable of taking into consideration 10 components
(l = 10) and the number of the discrete points in the spectra is n = 10,000. The
(small) negative molar ratios mentioned before are excluded on a lege artis way which
is equivalent with the use of SJJ elements of infinite value. The program has two
options according to the normalized and non-normalized versions. In both cases the
solution of the secular equation starts at N (0) = 1.0 and it goes to ‘self-consistency’.
In the iterative solution, the norm of the difference vector, calculated between the
coefficient vectors of two consecutive iteration steps, is the test for convergence. In
the current version, its threshold value is 10−6.

Details of the non-normalized version of the DISS method will be given in a forth-
coming paper. In this case the simplicity of the normalized DISS version will be lost
(namely, the lack of the need of calibration), and we need additional information.
However, this version can be useful in the case of quantitative analysis of a large
series of different mixtures consisting of the same set of chemical components.

3.2 Applications

Recently [38], we proposed the planning and execution of chemical reactions in four
‘algorithmic steps’: (i) in the first step, we hypothesize about the kind of products
that could theoretically be formed (potential products/components); (ii) compute the
chosen type of approximate spectra for all of the potential products; (iii) fulfil the reac-
tion and record the corresponding experimental spectrum, and, (iv) the best agreement
(proximity) between the computed spectra and the experimental one proves the struc-
ture of the de facto product(s). For the computation of the calculated spectra, we have
suggested empirically corrected theoretical spectra (see e.g., Refs. [38,43–45]). The
possible fields of application of the suggested procedure are the modern in situ spec-
troscopic investigations (see e.g., Refs. [46,47]). Through the further development in
computer technology as well as computational methods, the use of the procedure [38]
could be specifically favourable in the field of combinatorial syntheses [48].

In Ref. [38] we gave an example of the aforementioned procedure by the
silylation reaction of 1,3-dihydrobenzimidazol-2-one by BSTFA [N,O-bis(trimeth-
ylsilyl)trifluoro-acetamid], for which we have chosen the simple and popular IR
spectroscopy. Due to the two common tautomeric forms of the precursor [38], we
started to search for the result of the silylation in a set consisting of the poten-
tial products as follows: 1,3-bis(trimethylsilyl)benzimidazol-2-one (1), 1-trimethyl-
silyl-benzimidazol-2-one (2), 1-trimethylsilyl-2-trimethylsiloxy-benzimidazole (3),
2-trimethylsiloxy-benzimidazole (4), and 1-trimethylsilyl-2-hidroxy-benzimidazole
(5, see Scheme 1 of Ref. [38], respectively). We have determined the scaled quantum
mechanical (SQM) vibrational quadratic force fields [43–45] of the potential prod-
ucts 1–5 at the B3LYP/6-31G* [49–51] level and computed the band origins and the
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intensities of the IR fundamentals within the harmonic approximation. Next, the SQM
IR spectra [43–45] of the potential products were simulated by Lorentzian curves us-
ing a mean of the experimental halfwidths of 12 cm−1 [38] for all of the bands. The
experimental liquid-phase IR spectrum of the product(s) of the performed reaction has
been recorded and we have estimated [38] the de facto product of the reaction in the
simplest base of the highest similarity between the experimental and SQM-computed
spectra. For the numerical characterization of that similarity, we have proposed and
used a new measure in the field of vibrational spectroscopy, the scalar product [37,38].
However, this simple procedure was not sufficiently sensitive to prove or exclude the
possibility of simultaneous formation of other product(s) with any confidence. This
problem can be solved in a much more elegant way according to the new, presented
DISS method.

3.2.1 Decomposition of simulated mixtures (TA I)

First, we wanted to test the DISS method for simulated mixtures. Since simulated
mixtures are without any noise, impurity or computational error, and are free of asso-
ciations, they are suitable for validating the overall accuracy of the method. Simul-
taneously, we wanted to get some information about the properties of the iteration
mentioned before. Therefore, we applied the ‘orthodox procedure’ according to Eq. 13.

The aforementioned SQM-computed IR spectra of compounds 1–5 were selected
to represent the descriptive spectra in the 4000–400 cm−1 frequency region. [Note that
the determinant of the ‘complete’ coefficient matrix of Eq. 10 was −0.23608, which
means that the descriptive spectra are linearly independent.] Using definite simulated
‘mixtures’ of compounds 1–5, we decomposed the resulting spectra into their pure
components using the DISS method. As previously stated, these were simulated cases
for TA I, that is, for the quantitative analysis.

Accordingly, we have created simulated mixture’s spectra by mixing the non-nor-
malized SQM spectra of compounds (vide supra, and Ref. [38]) in different molar
ratios, respectively. We have selected the corresponding SQM spectra of the l = 5 of
different potential components, and used the DISS method for determining their molar
ratios. Both versions of the DISS method were used. The results of the normalized
version are presented in Table 1. As can be seen, the normalized version of the DISS
method performs quite well, the greatest deviation is of 9.1 molar percentages. In all
investigated cases the DISS method’s non-normalized version deciphered the exact
starting composition (within 10−6 accuracy) with |λ| < 10−6, in 10, 11, 7, and 8
iterative steps, respectively. It is trivial that the optimized value of the error functional
is equal to the minus two times value of the Lagrange multiplier, c.f. Eq. 9.

Other authors have published articles with similar objectives. Magar also consid-
ered the spectra as the vectors of the L2[a,b] Hilbert-space [52]. However, he did not
take into account the importance of any constraint or the normalization of the CDWA
spectrum, thus his method is a simple application of the linear combination of the
pure spectra. In fact, it is possible to derive the secular equations without constrains
as calculated by Magar [52]; his equation is similar to Eq. 10, omitting the (l+1)-th
row and column of the coefficient matrix and the (l+1)-th components of the vectors
on both sides of the equation. Aiming to check Magar’s method [52], we recalculated
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Table 1 Decomposition of simulated mixtures using the normalized version of the DISS method

Simulation 1 Simulation 2 Simulation 3 Simulation 4

‘Experimental’
molar ratios

0.1 (1) : 0.9 (3) 0.99 (1) : 0.01 (3) 0.11 (1) : 0.27 (3) :
0.62 (5)

0.11 (1) : 0.22 (2) :
0.33 (3) : 0.22 (4) :
0.12 (5)

DISS (normalized
version)

0.098 (1) : 0.902 (3) 0.990 (1) : 0. 010 (3) 0.145 (1):
0.361 (3) :
0.494 (5)

0.125 (1) : 0.197 (2) :
0.382 (3) : 0.213 (4) :
0.083 (5)

Iterative stepsa 8 8 7 7

Solutions of the DISS equations were made by using the program DISS Ver. 3.0; SQM IR spectra of the
components [38] (used in the 4000–400 cm−1 frequency region) denoted by bold-face numbers within
parentheses, see Sect. 3.2. Set of the potential components: 1 to 5 [l = 5, c.f. Eq. 1]. Experimental molar
ratios correspond to the mixing ratios of (non-normalized) SQM IR spectra, see Sect. 3.2.1
a Number of iterative steps needed to reach the experimental composition of the mixture with less than
10−6 accuracy in the norm of the difference vector of two consecutive parameter vectors during the iterative
solution; iteration started by N (0) = 1.0, see Sect. 3.1 for details

the simulated problems given in Table 1 using his procedure. The results were com-
pletely accurate, however, Magar’s method [52] was not able to give any reasonable
composition in case of real (not simulated) mixtures (see below). This is due to the
fact that Magar’s method neglects the normalizations completely (that is, not only in
case of the components’ descriptive spectra).

It is important to emphasize the fact that in Condition III we stated the linear inde-
pendency of the descriptive spectra. This is certainly gentler than the constraint of
Hennessey and Johnson [53], which requires the orthogonality of the pure spectra
used in deducing chiral contribution of the common secondary structures from CD
curves of proteins. Other authors (see e.g., Refs. [18,22,23] and references therein)
required the fulfillment of the non-negativity of both spectral and concentration values
in the spectral decomposition of mixtures. Our novel DISS method is more general
compared to the aforementioned procedures due to the fact that it does not require
the non-negativity, neither for the spectral values nor for the concentrations. There-
fore, the DISS method is capable to handle even, for instance, EPR, CD, and VCD
spectra as well; these contain both negative and positive data points. Nevertheless,
there is no need to use any integration like in Ref. [31]. Moreover, the DISS method,
rejecting the constraint of non-negativity in concentrations, does not require the use
of a simplex optimization algorithm [54] like in the works of other authors (see e.g.,
Refs. [22,23,55–58] and references therein). The simplex procedure can be applied
to linear (or special non-linear) target functions. However, in the case of special non-
linear target functions (see e.g., Refs. [22,23,56–58]), the simplex method is suitable
for functional optimizations only if the number of the components is rather small.
Naturally, our DISS method is able to treat a much larger number of components.
Moreover, in the simplex method, it is also problematic if a negative coefficient term
would have resulted in an optimal solution. Using the DISS method, smaller nega-
tive concentration values can occur but these can be avoided (vide supra). The DISS
method is more robust numerically than the simplex procedure.
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Summing up, our method is suitable for identifying the completely accurate com-
position of chemical mixtures in ideal cases in its non-normalized version, and yields
reasonable estimate of the composition in case of the normalized version.

3.2.2 Decomposition of experimental IR spectrum by SQM computed spectra (TA II)

The next test case was the reinvestigation of the silylation reaction of 1,3-di-
hydrobenzimidazol-2-one by BSTFA (vide supra and Ref. [38]). Here, we used the
experimental IR spectrum of the reaction’s unknown (“mixture”) product(s), and the
computed SQM IR (descriptive) spectra were applied in the search for the set of the de
facto products (components). Obviously, this is a case of TA II, a qualitative analysis.
The situation could be more complex than the former one described in Chap. 3.2.1 by
the presence of possible associations. All of the mentioned spectra were recorded/com-
puted in the 4000–400 cm−1 frequency region (the resolution was 2 cm−1). For the
computed bands, a Lorentzian shape was used; the halfwidths of all bands were consid-
ered to be 12 cm−1 [38]. The solution of the normalized version of the DISS equations
gave the following result (using 12 steps of iteration, starting with N (0) = 1.0):

x1 = 0.665; x2 = 0.083; x3 = 0.180;
x4 = 0.072; x5 = 0.000; −2λ = 0.606. (15)

As shown, the DISS method yields about 67 molar percentage for 1 and 18 percentage
points for 3 . Other products have much smaller (<0.085) ratios. (Note the zero ratio
in case of 5, in contrast to the result derived from simple similarity in Ref. [38]). We
know from our previous work [38] that the exact result of the silylation reaction is
compound 1, as determined by independent NMR measurements. Despite of this, the
DISS method showed the formation of two ‘new’ compounds practically. Naturally,
this is not the failure of the DISS method, rather is due to the quite low (still best
harmonic) level of approximation of the computed IR spectra. However, even at this
rather limited level of approximation, the DISS method yields an estimate of the de
facto products within a significantly smaller list (1 and 3) of the potential products
than that of the original one (1 to 5). In the case of a much larger set of potential
products, this character can be of particular advantage (c.f., spectral databases).

3.2.3 Decomposition of experimental IR spectrum by pure experimental IR spectra
(TA I)

Table 2 shows the results of a real experimental IR test series we performed. In these
experiments, hexa-chloro-buta-1,3-diene (HCB) and dioxane (D) were mixed in dif-
ferently weighted molar ratios. The wavenumber interval investigated was the 4000–
400 cm−1 region, with a resolution of 4 cm−1 . The resulting experimental spectra were
decomposed by the normalized version of the DISS method using the experimental
IR spectra of the pure components. This is a case of TA I (quantitative analysis). This
investigation series differs from the previous application in the context of the noise of
the ‘natural’ (not simulated) spectra.
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Table 2 Mixtures of hexa-chloro-buta-1,3-diene (HCB) and dioxane (D): IR spectra decomposed by the
normalized version of the DISS method

Mixture 1 Mixture 2a Mixture 3a Mixture 4a Mixture 5 Mixture 6 Mixture 7

Exp. molar
ratios

1.00 (HCB) :
0.00 (D)

0.954
(HCB) :
0.046 (D)

0.682
(HCB) :
0.318 (D)

0.501
(HCB) :
0.499 (D)

0.205
(HCB) :
0.795 (D)

0.054
(HCB) :
0.946 (D)

0.00
(HCB) :
1.00 (D)

Iterative
stepsb

2 4 7 5 11 13 2

Results:

xHCB 1.00
(HCB)

1.000
(HCB)

0.625
(HCB)

0.449
(HCB)

0.191
(HCB)

0.090
(HCB)

0.00
(HCB)

xD 0.00
(D)

0.000
(D)

0.375
(D)

0.551
(D)

0.809
(D)

0.910
(D)

1.00
(D)

Experimental IR spectra of the components were recorded by a Bruker IFS 55 spectrometer using a resolu-
tion of 4 cm−1 and 128 scans. The spectra were observed in a liquid film between KBr windows, at room
temperature, in the 4000–400 cm−1 frequency region. Set of the potential components: HCB and D [l = 2,
c.f. Eq. 1]. Experimental molar ratios correspond to the weighted mixing ratios in Eq. 4, see Sect. 3.2.3
a In the case of Mixture 2, 3 and 4 the solutions were opalescent
b See footnote a of Table 1

As can be seen, the differences vary from −3.6 to +5.7 molar percentages. This
is a quite good result considering the fact that some of the mixtures (see Mixture 2, 3
and 4 in Table 2) were opalescent in contempt of the ultrasonic homogenization. We
suppose that in the case of completely miscible mixtures the difference between the
weigthed and the resulting molar ratios would be even smaller (≤3.6 molar percentage
points, see Mixture 1, 5–7 of Table 2). We emphasize the advantage of the normalized
version of the DISS method as the IR spectra were recorded using liquid film tech-
nique between KBr windows: the method does not require the use of uniform path
lengths.

3.2.4 Decomposition of experimental NMR spectrum by pure experimental NMR
spectra (TA I)

It is our hope that the presented DISS method will also be frequently applied for chemi-
cal analysis in the field of NMR spectrometry. Consequently, we investigated the DISS
method for a better characterization on this special topic: we mixed D-camphor (C) and
L-menthol (M) in given concentrations and recorded the mixtures’ 1H-NMR spectra.
Since the resulting spectra have strongly overlapping peaks, it is reasonable to apply
our method. With the use of the NMR spectra of the pure components, we decom-
posed the mixtures’ spectra using the normalized version of the DISS method, again,
a TA I (quantitative analysis) case using the terminology from the Theory chapter.
The spectra were recorded in CDCl3 solvent, and TMS was used as a standard. The
spectral interval was between 2.60 and 0.60 ppm, corresponding to 3,172 data points.
The interval of the spectra was selected in such a way that neither the solvent nor
the TMS standard would give any signal in the corresponding interval. Note that the
NMR signals of the pure components were slightly shifted compared to the mixture’s
signals. Another problem was caused by the NMR spectra’s pin-style narrow peaks.

123



J Math Chem (2010) 47:1085–1105 1099

Table 3 Mixtures of D-camphor (C) and L-menthol (M): 1H-NMR spectra decomposed by the normalized
version of the DISS method

Mixture 1 Mixture 2 Mixture 3 Mixture 4 Mixture 5 Mixture 6 Mixture 7

Exp. molar ratios 1.00 (C) :
0.00 (M)

0.833 (C) :
0.167 (M)

0.667 (C) :
0.333 (M)

0.500 (C) :
0.500 (M)

0.333 (C) :
0.667 (M)

0.167 (C) :
0.833 (M)

0.00 (C) :
1.00 (M)

Original

Iterative stepsa 2 11 8 5 7 11 2

Results:

xC 1.00 (C) 0.854 (C) 0.702 (C) 0.525 (C) 0.350 (C) 0.139 (C) 0.00 (C)

xM 0.00 (M) 0.146 (M) 0.298 (M) 0.475 (M) 0.650 (M) 0.861 (M) 1.00 (M)

Broadened

Iterative stepsa 2 9 7 3 7 9 2

Results:

xC 1.00 (C) 0.841 (C) 0.671 (C) 0.500 (C) 0.327 (C) 0.138 (C) 0.00 (C)

xM 0.00 (M) 0.159 (M) 0.329 (M) 0.500 (M) 0.673 (M) 0.862 (M) 1.00 (M)

Experimental 1H-NMR spectra of the components were recorded by a Bruker DRX 500 spectrometer at
11.744 T field using 5 mm Z-gradient inverse probe in dry CDCl3 solvent and 1% TMS. Set of the potential
components: C and M [l = 2, c.f. Eq. 1]. Experimental molar ratios correspond to the weighted mixing
ratios in Eq. 4. For the cases Original and Broadened see Sect. 3.2.4
a See footnote a of Table 1

It seemed that Eq. 10 can be ill-conditioned by the occurrence of narrow peaks, thus
the NMR spectra were processed in two different ways. In the “Original” test series,
the typical LB = 0.3 Hz parameter was used for the standard line broadening, since in
the second case (“Broadened” series), the experimental NMR peaks were artificially
broadened with LB = 2 Hz parameter by the exponential multiplication method. The
experimental values and the results are shown in Table 3.

As presented in Table 3, the NMR test case was rather successful, with the larg-
est difference between the (experimental) weighting and the DISS values being 3.5
(“Original” case) and −2.9 (“Broadened” case) molar percentages, respectively. The
results shown in Table 3 prove that the use of artificially broadened NMR peaks is
able to enhance the numerical accuracy of the DISS method.

4 Conclusions

In this work we have generalized our earlier procedure [38] based on the spectral prox-
imity between the resulting mixture spectrum and the chemical components’ spectra.
The new DISS method has a mathematical analogy to the DIIS methods of Pulay
[34,35] and of Pulay and Császár [36], methods widely used in quantum chemistry.
Our DISS method operates in the spectral subspace of finite dimension of the Hil-
bert-space, spanned by (non-)normalized and non-orthogonal spectra of the chemical
components which are supposed to be present in the mixture. It has been shown that
the linear coefficients are the molar ratios whose sum is equal to unity, which is the
only constraint explicitly used in the framework of the Lagrangian undetermined mul-
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tipliers in DISS method. Despite the fact that the method leads to a linearized system
of equations, the DISS method is iterative subsequent to the unknown value of the
normalization constant of the CDWA spectrum. The iteration was convergent until
‘self-consistency’ in all test cases investigated. The DISS method is capable of find-
ing the exact composition of mixtures in ideal cases (without associations, noise and
impurities) in its non-normalized version. The applicability of the normalized version
of the DISS method was shown in simple IR and NMR applications. Our method
can be used in conjunction with any kind of molecular spectra (IR, NMR, Raman,
EPR, CD, VCD, and so on) and can also treat spectra with negative data points. The
application of the non-normalized version of the new method will be published in a
forthcoming paper.

We have shown that the normalized version of the DISS method is insensitive to the
mass of the samples and does not require the knowledge of the molar absorptivities
or ellipticities and so on. This means that the use of the method is very easy: it does
not need, for example, the uniform value of the path length at the recording of the
mixture’s and components’ spectra. However, in order to obtain information about the
confidence of the method (that is, about the validity of the conditions accepted like
spectral additivity and linear independence, the role of the noise, as well as about the
unknown proximity of norms of the non-normalized components’descriptive spectra),
before the use of the DISS method for quantitative analysis, it is advisable to make a
series of control measurement on the general accuracy.

We emphasize that the quality of the descriptive spectra used in the DISS method
is not confined to the well-defined approximate levels of molecular quantum mechan-
ics [59–61]. The well-known ‘spectrum-generators’ are also useful, similarly to the
ACD/HNMR predictor well-spread in NMR spectrometry [62–64].

One question remains, namely the maximum size of the problems where the DISS
method is applicable. We believe that the size is only limited by the noise of the exper-
imental spectra (and the level of the quantum mechanical approximation, if any of
them is used). In the case of very large matrices, it is not advisable to use a matrix
inversion since inversion methods scale with the cube of the size of the matrix. In
such cases, iterative solution for a system of linear equations are more favourable in
providing a quadratic scaling.

We hope that our novel method will be extensively used in quantitative chemi-
cal and biochemical analysis. While the DISS method is supposed to be used most
frequently in the IR and NMR spectra, it can also be fruitfully used in Raman spec-
troscopy, in particular, in aqueous media. This allows for the investigation of products
and materials in food and drug chemistry as well.
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Appendix A

In order to use the present method, we have to take into consideration two principles.
However, since we are not able to prove these principles at this time, it is suggested
that they be treated as postulates.

Postulate I states that the relationship between the compounds and their experi-
mental spectra is mutually unambiguous. Here, the term ‘spectrum’ means any kind
of molecular spectra (UV/Vis, IR, Raman, NMR, EPR, VCD, and so on) of the com-
pounds, and it has to use a ‘wide enough’ interval. The verification of Postulate I is
as follows. It is a well-known fact that the band origin of any spectral band is the
difference of the corresponding stationary energy levels Eκ and Eκ ′ , respectively.
There can be random cases where two or more different systems have the same gaps
between some of their energy levels. However, the intensity of a band (e.g., absorption)
depends generally on the matrix element of the M̂ operator of the specific interaction
with respect to the Ψ κ initial and Ψ κ ′ final state vectors:

〈

Ψκ ′ |M̂Ψκ

〉

. (A.1)

Both the initial and the final state vectors are characteristic for the compound investi-
gated. Although we can only measure the differences of the intensities, if we consider
a ‘wide enough’ interval of any spectra, even at low resolution, it is very likely that it
will be characteristic for one, and only one, compound.

Postulate II is somewhat stricter than the previous one. It states that the experimental
spectra of the different compounds are not only different but linearly independent. Let
us think for the scalar product of two spectra (corresponding to different compounds)
[38]. If the scalar product is zero, the spectra would obviously be linearly independent
[because none of the experimental spectra could be the zero vector, see text following
Eq. 1]. However, if the scalar product is not zero (let us consider the fingerprint region
of the IR spectra, for instance), even this circumstance allows for the spectra to be
linearly independent. In other words, we consider the {|ΦI 〉}l

1 set of the descriptive
spectra of the potential components as a normalized (or non-normalized) and always
non-orthogonal basis set in the actual subspace of the Hilbert-space. Moreover, it is
supposed that Postulates I and II correspond not only for the experimental but also the
computed ‘descriptive’ spectra of the compounds (that is, the quality of the computed
spectra is “good enough”).

Appendix B

It is easy to show that the normalized
∣

∣Φ
exp
I

〉

experimental spectrum of the I-th potential
component (I = 1, 2, . . . , l) corresponds to unit number of molecules. Let us start
with NI number of ‘spectroscopically active’ molecules in the light beam (the NI ‘s
are zero for the I = m +1, m +2, . . ., l virtual components); supposing the additivity,
the resulting spectrum for the I-th component is:

NI

∣

∣

∣ϕ
exp ′
I

〉

, (B.1)
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where
∣

∣

∣ϕ
exp′
I

〉

is the non-normalized spectrum of the I-th component originating from

unit number of molecules (hitherto the Greek capitals mean spectra originating from
an indefinite number of molecules, since Greek lower-case letters mean those originat-
ing from unit number of molecules. Also, the apostrophe stands for non-normalized
spectra. Naturally, ‘unit number of molecules’ may mean one mole of the I-th com-
ponents’ molecules as well, and in that case NI would mean the number of moles of
‘spectroscopically active’ molecules.) The square of the norm of this vector is:

〈

NI ϕ
exp ′
I |NI ϕ

exp ′
I

〉

= N 2
I

〈

ϕ
exp ′
I |ϕexp ′

I

〉

≡ N 2
I ·

∥

∥

∥ϕ
exp ′
I

∥

∥

∥

2
, (B.2)

thus the normalization constant is

NI =
(

NI

∥

∥

∥ϕ
exp ′
I

∥

∥

∥

)−1
. (B.3)

Therefore, the normalized
∣

∣Φ
exp
I

〉 = NI

∣

∣

∣Φ
exp ′
I

〉

= ∣

∣ϕ
exp
I

〉

spectrum corresponds to unit

number of molecules of the I-th chemical component. Usually, we do know neither the
number of spectroscopically active molecules, nor the norm of the components’ spec-
tra originating from unit number of molecules (excepting the case of the components’
computed spectra). Thus, the normalization constant can be determined according to
the Eq. 3b in case of the normalized version of the present method. The I-th compo-

nent’s non-normalized
∣

∣

∣ϕ
exp′
I

〉

spectrum originated from unit number of molecules can

be expressed as

∣

∣

∣ϕ
exp ′
I

〉

=
∥

∥

∥ϕ
exp ′
I

∥

∥

∥ · ∣

∣ϕ
exp
I

〉

, (B.4)

obviously. This is a suitable form for the purpose of the non-normalized version of
our method.

Now, let us express the resulting spectrum of an additive mixture applying the non-

normalized
∣

∣

∣ϕ
exp ′
I

〉

components’ experimental spectra, and suppose that there are NI

number of active molecules in the light beam (I = 1, 2, . . . , l, respectively):

∣

∣

∣Φ
mix′〉 =

∑

I

NI

∣

∣

∣ϕ
exp ′
I

〉

=
(

∑

J

NJ

)
⎛

⎝

∑

I NI

∣

∣

∣ϕ
exp ′
I

〉

∑

J NJ

⎞

⎠

=
(

∑

J

NJ

)

∑

I

xexp
I

∣

∣

∣ϕ
exp ′
I

〉

=
(

∑

J

NJ

)

∣

∣ϕexp ′〉 , (B.5)

where
∣

∣ϕexp ′〉 is the (non-normalized) ‘gross descriptive’ spectrum originating from
the mixture’s “unit number of average molecules” and the xexp

I linear coefficients
are, obviously, the molar ratios. (We denoted the normalization coefficient of

∣

∣Φmix′〉

as N mix, c.f., Eq. 5, thus,
∣

∣ϕmix
〉 = N mix

∣

∣Φmix′〉). Consequently, if Condition Ib
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is also valid, due to the normalizations, the mixture’s experimental spectrum and
the components’ experimental spectra are equally independent from the number of
spectroscopically active molecules, thus, for example, from the path length and the
weighting amounts (mass of the samples). This is very advantageous feature of the
normalized version of the present method.

Appendix C

In Eq. 8 a trivial constraint on the molar ratios is given. Seemingly, this alone is insuf-
ficient because it also has to be valid for all of the coefficients 0 ≤ xI ≤ 1[I =
1, 2, . . ., l; together with Eq. 8 the so called ‘convex constraints’]. In the original DIIS
procedures [34–36], these ‘additional’ constraints are completely invalid because the
linear coefficients can also be negative (!). However, in the current DISS procedure,
the situation is the opposite: negative mixing coeffients are physically meaningless.

We can easily show that there is no need to explicitly implement all the convex
constraints; it is simply enough to require the fulfillment of Eq. 8. The verification of
this statement is as follows.

Eq. C.1 shows the structure of the coefficient matrix of Eq. 10:

A =
(

S b

b† c

)

, (C.1)

where S is the (positive definite) Gram matrix of the |ΦI 〉 (I = 1, 2, . . . , l) normalized
descriptive spectra of the potential components, b is a vector, † means the adjoint, and
c is a number. With the help of the Schur complement [65] of S, it could be proven
that the determinant of A is:

det (A) = det (S) · (c − b†S−1b). (C.2)

In the case of Eq. 10, the value of c is zero and from this fact it follows that A is neg-
ative definite. This means that the A matrix is not singular, is invertible and, therefore,
Eq. 10 has a unique solution. In our case, this must be the ‘physically meaningful’
solution with 0 ≤ xI ≤ 1 molar ratios, at least in the case of a quantitative analysis
(see TA I above).
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